203/Math. 22-23 / 22153

P.G. Semester-II Examination, 2023 MATHEMATICS

Course ID: 22153 Course Code: MATH203C

Course Title : Calculus of Several Variables & Differential Geometry of Curves and Surfaces

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Notations and symbols have their usual meaning.

GROUP-A

(Calculus of Several Variables)

Answer any **three** of the following questions: $8 \times 3 = 24$

- 1. i) If a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at $c \in \mathbb{R}^n$, then show that f is continuous at c.
 - ii) If a function $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable at $c \in \mathbb{R}^n$, then show that

$$Df(c) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n}\right).$$

- iii) Find the directional derivative of the function $f: \mathbb{R}^3 \to \mathbb{R}$, given by $f(x, y, z) = x^2 + y^2 z^2$ in the direction (1, 1, 0) at (1, 0, 1). 2+3+3
- 2. i) If $f: \mathbb{C} \to \mathbb{C}$ is a complex differentiable function, then show that the corresponding real function $f: \mathbb{R}^2 \to \mathbb{R}^2$ is real differentiable. Is the converse true? Support your answer.
 - ii) Let $f: \mathbb{R}^m \to \mathbb{R}^p$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ be two vector functions. If g is differentiable at $a \in \mathbb{R}^n$ and f is differentiable at $g(a) \in \mathbb{R}^m$, then show that $(f \circ g): \mathbb{R}^n \to \mathbb{R}^p$ is differentiable at a.

(2+1)+5

- 3. i) State and prove the Taylor's theorem for several variables.
 - ii) Suppose that $f: V \to \mathbb{R}$ is defined on an open set $V \subset \mathbb{R}^2$. If f_x , f_y and f_{xy} exist at every point of V, and f_{xy} is continuous at some point $(a, b) \in V$, then f_{yx} exist at (a, b) and $f_{yx} = f_{xy}$. 5+3
- 4. i) Let V be open in \mathbb{R}^n and $f:V \to \mathbb{R}^n$ be C^1 on V. If $\det(Df(a)) \neq 0$ for some $a \in V$, then prove that there exists an open set W containing a such that f is 1-1 on W.

- Find the second and third derivatives of the function $f: \mathbb{R}^2 \to \mathbb{R}$, given by $f(x, y) = x^2 y^2$ at (0, 1).
- 5. i) If f, g are Riemann integrable functions on a domain $\Omega \subset \mathbb{R}^n$ then show that

$$\int_{\Omega} (af + bg) = a \int_{\Omega} f + b \int_{\Omega} g, \ \forall a, b \in \mathbb{R}.$$

ii) State and prove Fubini's theorem for Riemann integrable functions.5

GROUP-B

(Differential Geometry of Curves and Surfaces)

Answer any **two** of the following questions: $8 \times 2 = 16$

- 6. i) If A^i and B^j are the components of two contravariant vectors, then prove that their outer product is a tensor of type (2, 0). But the converse is not true.
 - ii) If a vector has contravariant components (\ddot{x}, \ddot{y}) in Cartesian coordinates, then find its components in polar coordinates.
 - iii) Find the torsion of the curve $\gamma(u) = 3(\cos u, \sin u, \cos 2u)$. 2+3+3

- 7. i) Find the signed curvature of the plane curve $y = \cosh x$.
 - ii) Find out a unit speed reparametrization of the space curve $\gamma(\theta) = (a\cos\theta, a\sin\theta, b\theta)$, where a and b are two constants.
 - iii) State and prove first Bianchi's identity. 2+3+3
- 8. i) Find the fields of three fundamental directions on the helix

$$\gamma(s) = \left(\frac{4}{5}\cos s, \frac{4}{5}\sin s, \frac{3}{5}s\right).$$

- ii) Show that area of a surface patch is invariant under reparametrization.
- iii) Find the second fundamental form of the surface of revolution

$$\sigma(u, v) = (f(u)\cos v, f(u)\sin v, g(u)), f(u) > 0, \forall u.$$

$$2+3+3$$
